Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
1.
Parasitol Res ; 123(1): 104, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240890

RESUMO

Tetrahymenosis is caused by the ciliated protozoan Tetrahymena and is responsible for serious economic losses to the aquaculture industry worldwide. However, information regarding the molecular mechanism leading to tetrahymenosis is limited. In previous transcriptome sequencing work, it was found that one of the two ß-tubulin genes in T. pyriformis was significantly expressed in infected fish, we speculated that ß-tubulin is involved in T. pyriformis infecting fish. Herein, the potential biological function of the ß-tubulin gene in Tetrahymena species when establishing infection in guppies was investigated by cloning the full-length cDNA of this T. pyriformis ß-tubulin (BTU1) gene. The full-length cDNA of T. pyriformis BTU1 gene was 1873 bp, and the ORF occupied 1134 bp, whereas 5' UTR 434 bp, and 3' UTR 305 bp whose poly (A) tail contained 12 bases. The predicted protein encoded by T. pyriformis BTU1 gene had a calculated molecular weight of 42.26 kDa and pI of 4.48. Moreover, secondary structure analysis and tertiary structure prediction of BTU1 protein were also conducted. In addition, morphology, infraciliature, phylogeny, and histopathology of T. pyriformis isolated from guppies from a fish market in Harbin were also investigated. Furthermore, qRT-PCR analysis and experimental infection assays indicated that the expression of BTU1 gene resulted in efficient cell proliferation during infection. Collectively, our data revealed that BTU1 is a key gene involved in T. pyriformis infection in guppies, and the findings discussed herein provide valuable insights for future studies on tetrahymenosis.


Assuntos
Poecilia , Tetrahymena pyriformis , Tetrahymena , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tetrahymena/genética , Poecilia/genética , DNA Complementar/metabolismo , Tetrahymena pyriformis/genética , Tetrahymena pyriformis/metabolismo , RNA Mensageiro/metabolismo
2.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667859

RESUMO

Ciliates assemble numerous microtubular structures into complex cortical patterns. During ciliate division, the pattern is duplicated by intracellular segmentation that produces a tandem of daughter cells. In Tetrahymena thermophila, the induction and positioning of the division boundary involves two mutually antagonistic factors: posterior CdaA (cyclin E) and anterior CdaI (Hippo kinase). Here, we characterized the related cdaH-1 allele, which confers a pleiotropic patterning phenotype including an absence of the division boundary and an anterior-posterior mispositioning of the new oral apparatus. CdaH is a Fused or Stk36 kinase ortholog that localizes to multiple sites that correlate with the effects of its loss, including the division boundary and the new oral apparatus. CdaH acts downstream of CdaA to induce the division boundary and drives asymmetric cytokinesis at the tip of the posterior daughter. CdaH both maintains the anterior-posterior position of the new oral apparatus and interacts with CdaI to pattern ciliary rows within the oral apparatus. Thus, CdaH acts at multiple scales, from induction and positioning of structures on the cell-wide polarity axis to local organelle-level patterning.


Assuntos
Tetrahymena thermophila , Tetrahymena , Tetrahymena/genética , Divisão Celular/genética , Acetamidas , Tetrahymena thermophila/genética , Citoesqueleto
3.
Biochemistry ; 62(22): 3173-3180, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37910627

RESUMO

Folding of the Tetrahymena group I intron ribozyme and other structured RNAs has been measured using a catalytic activity assay to monitor the native state formation by cleavage of a radiolabeled oligonucleotide substrate. While highly effective, the assay has inherent limitations present in any radioactivity- and gel-based assay. Administrative and safety considerations arise from the radioisotope, and data collection is laborious due to the use of polyacrylamide gels. Here we describe a fluorescence-based, solution assay that allows for more efficient data acquisition. The substrate is labeled with 6-carboxyfluorescein (6FAM) fluorophore and black hole quencher (BHQ1) at the 5' and 3' ends, respectively. Substrate cleavage results in release of the quencher, increasing the fluorescence signal by an average of 30-fold. A side-by-side comparison with the radioactivity-based assay shows good agreement in monitoring Tetrahymena ribozyme folding from a misfolded conformation to the native state, albeit with increased uncertainty. The lower precision of the fluorescence assay is compensated for by the relative ease and efficiency of the workflow. In addition, this assay will allow institutions that do not use radioactive materials to monitor native folding of the Tetrahymena ribozyme, and the same strategy should be amenable to native folding of other ribozymes.


Assuntos
RNA Catalítico , Tetrahymena , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , Tetrahymena/genética , Fluorescência , Íntrons , Cinética
4.
Biochimie ; 214(Pt A): 112-122, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558081

RESUMO

I-motifs are non-canonical DNA structures consisting of two parallel strands held together by hemiprotonated cytosine-cytosine+ base pairs, which intercalate to form a ordered column of stacked base pairs. This unique structure covers potential relevance in various fields, including gene regulation and biotechnological applications. A unique structural feature of I-motifs (iM), is the presence of sugar-sugar interactions through their extremely narrow minor grooves. Consistently, oligonucleotides containing pentose derivatives such as ribose, 2'-deoxyribose, arabinose, and 2'-deoxy-2'-fluoroarabinose highlighted a very different attitude to fold into iM. On the other hand, there is significant attention focused on exploring sugar-modifications that can increase nucleic acids resistance to nuclease degradation, a crucial requirement for therapeutic applications. An interesting example, not addressed in the iM field yet, is represented by hexitol nucleic acid (HNA), a metabolically stable six-membered ring analogue compatible with A-like double helix formation. Herein, we selected two DNA C-rich Tetrahymena telomeric sequences whose tetrameric iMs were already resolved by NMR and we investigated the iM folding of related HNA and RNA oligonucleotides by circular dichroism, differential scanning calorimetry and NMR. The comparison of their behaviours vs the DNA counterparts provided interesting insights into the influence of the sugar on iM folding. In particular, ribose and hexitol prevented iM formation. However, by clustering the hexitol-containing residues at the 3'-end, it was possible to modulate the distribution of the different topological species described for the DNA iMs. These data open new avenues for the exploitation of sugar modifications for I-motif characterization and applications.


Assuntos
Ácidos Nucleicos , Tetrahymena , Ribose , Tetrahymena/genética , Conformação de Ácido Nucleico , DNA/genética , DNA/química , Oligonucleotídeos/química , Citosina/química
5.
Nat Commun ; 14(1): 1294, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928031

RESUMO

Group I introns are catalytic RNAs that coordinate two consecutive transesterification reactions for self-splicing. To understand how the group I intron promotes catalysis and coordinates self-splicing reactions, we determine the structures of L-16 Tetrahymena ribozyme in complex with a 5'-splice site analog product and a 3'-splice site analog substrate using cryo-EM. We solve six conformations from a single specimen, corresponding to different splicing intermediates after the first ester-transfer reaction. The structures reveal dynamics during self-splicing, including large conformational changes of the internal guide sequence and the J5/4 junction as well as subtle rearrangements of active-site metals and the hydrogen bond formed between the 2'-OH group of A261 and the N2 group of guanosine substrate. These results help complete a detailed structural and mechanistic view of this paradigmatic group I intron undergoing the second step of self-splicing.


Assuntos
RNA Catalítico , Tetrahymena , RNA Catalítico/metabolismo , Tetrahymena/genética , Tetrahymena/metabolismo , Microscopia Crioeletrônica , Splicing de RNA , Íntrons/genética , Conformação de Ácido Nucleico
6.
J Eukaryot Microbiol ; 70(1): e12936, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808858

RESUMO

Mitochondrial cox1 689 bp barcodes are routinely used for identification of Tetrahymena species. Here, we examine whether two shorter nuclear sequences, the 5.8S rRNA gene region and the intergenic region between H3 and H4 histone genes, might also be useful either singly or in combination with each other or cox1. We obtained sequences from ~300 wild isolates deposited at the Tetrahymena Stock Center and analyzed additional sequences obtained from GenBank. The 5.8S rRNA gene and portions of its transcribed flanks identify isolates as to their major clade and uniquely identify some, but not all, species. The ~330 bp H3/H4 intergenic region possesses low intraspecific variability and is unique for most species. However, it fails to distinguish between two pairs of common species and their rarer counterparts, and its use is complicated by the presence of duplicate genes in some species. The results show that while the cox1 sequence is the best single marker for Tetrahymena species identification, 5.8S rRNA, and the H3/H4 intergenic regions sequences are useful, singly or in combination, to confirm cox1 species assignments or as part of a preliminary survey of newly collected Tetrahymena. From our newly collected isolates, the results extend the biogeographical range of T. shanghaiensis and T. malaccensis and identify a new species, Tetrahymena arleneae n. sp. herein described.


Assuntos
Tetrahymena , Tetrahymena/genética , Mitocôndrias/genética , DNA Intergênico/genética , Filogenia
7.
Mol Biol Cell ; 34(2): rs1, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475712

RESUMO

Tetrahymena thermophila harbors two functionally and physically distinct nuclei within a shared cytoplasm. During vegetative growth, the "cell cycles" of the diploid micronucleus and polyploid macronucleus are offset. Micronuclear S phase initiates just before cytokinesis and is completed in daughter cells before onset of macronuclear DNA replication. Mitotic micronuclear division occurs mid-cell cycle, while macronuclear amitosis is coupled to cell division. Here we report the first RNA-seq cell cycle analysis of a binucleated ciliated protozoan. RNA was isolated across 1.5 vegetative cell cycles, starting with a macronuclear G1 population synchronized by centrifugal elutriation. Using MetaCycle, 3244 of the 26,000+ predicted genes were shown to be cell cycle regulated. Proteins present in both nuclei exhibit a single mRNA peak that always precedes their macronuclear function. Nucleus-limited genes, including nucleoporins and importins, are expressed before their respective nucleus-specific role. Cyclin D and A/B gene family members exhibit different expression patterns that suggest nucleus-restricted roles. Periodically expressed genes cluster into seven cyclic patterns. Four clusters have known PANTHER gene ontology terms associated with G1/S and G2/M phase. We propose that these clusters encode known and novel factors that coordinate micro- and macronuclear-specific events such as mitosis, amitosis, DNA replication, and cell division.


Assuntos
Cilióforos , Tetrahymena thermophila , Tetrahymena , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Núcleo Celular/metabolismo , Ciclo Celular/genética , Mitose/genética , Perfilação da Expressão Gênica , Tetrahymena/genética
8.
Proc Natl Acad Sci U S A ; 119(49): e2209422119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442111

RESUMO

CYT-19 is a DEAD-box protein whose adenosine-triphosphate (ATP)-dependent helicase activity facilitates the folding of group I introns in precursor RNA (pre-RNA) of Neurospora crassa (N. crassa). In the process, they consume a substantial amount of ATP. While much of the mechanistic insight into CYT-19 activity has been gained through the studies on the folding of Tetrahymena group I intron ribozyme, the more biologically relevant issue, namely the effect of CYT-19 on the self-splicing of pre-RNA, remains largely unexplored. Here, we employ a kinetic network model, based on the generalized iterative annealing mechanism (IAM), to investigate the relation between CYT-19 activity, rate of ribozyme folding, and the kinetics of the self-splicing reaction. The network rate parameters are extracted by analyzing the recent biochemical data for CYT-19-facilitated folding of Tetrahymena ribozyme. We then build extended models to explore the metabolism of pre-RNA. We show that the timescales of chaperone-mediated folding of group I ribozyme and self-splicing reaction compete with each other. As a consequence, in order to maximize the self-splicing yield of group I introns in pre-RNA, the chaperone activity must be sufficiently large to unfold the misfolded structures, but not too large to unfold the native structures prior to the self-splicing event. We discover that despite the promiscuous action on structured RNAs, the helicase activity of CYT-19 on group I ribozyme gives rise to self-splicing yields that are close to the maximum.


Assuntos
RNA Catalítico , Tetrahymena , Precursores de RNA , RNA Catalítico/genética , Splicing de RNA , RNA/genética , Tetrahymena/genética , Trifosfato de Adenosina
9.
Proc Natl Acad Sci U S A ; 119(37): e2209146119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067294

RESUMO

The Tetrahymena group I intron has been a key system in the understanding of RNA folding and misfolding. The molecule folds into a long-lived misfolded intermediate (M) in vitro, which has been known to form extensive native-like secondary and tertiary structures but is separated by an unknown kinetic barrier from the native state (N). Here, we used cryogenic electron microscopy (cryo-EM) to resolve misfolded structures of the Tetrahymena L-21 ScaI ribozyme. Maps of three M substates (M1, M2, M3) and one N state were achieved from a single specimen with overall resolutions of 3.5 Å, 3.8 Å, 4.0 Å, and 3.0 Å, respectively. Comparisons of the structures reveal that all the M substates are highly similar to N, except for rotation of a core helix P7 that harbors the ribozyme's guanosine binding site and the crossing of the strands J7/3 and J8/7 that connect P7 to the other elements in the ribozyme core. This topological difference between the M substates and N state explains the failure of 5'-splice site substrate docking in M, supports a topological isomer model for the slow refolding of M to N due to a trapped strand crossing, and suggests pathways for M-to-N refolding.


Assuntos
Dobramento de RNA , RNA Catalítico , Tetrahymena , Microscopia Crioeletrônica , Cinética , RNA Catalítico/química , Tetrahymena/genética
10.
Methods Mol Biol ; 2509: 53-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796956

RESUMO

Piwi-bound small RNAs induce programmed DNA elimination in the ciliated protozoan Tetrahymena. Using the phenomenon called codeletion, this process can be reprogrammed to induce ectopic DNA elimination at basically any given genomic location. Here, we describe the usage of codeletion for genetic studies in Tetrahymena and for investigations of the molecular mechanism of Piwi-directed programmed DNA elimination.


Assuntos
Tetrahymena , DNA de Protozoário/genética , RNA , Interferência de RNA , RNA de Protozoário/genética , Tetrahymena/genética
11.
J Biosci Bioeng ; 134(3): 195-202, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810135

RESUMO

Naturally occurring ribozymes with defined three-dimensional (3D) structures serve as promising platforms for the design and construction of artificial RNA nanostructures. We constructed a hexameric ribozyme nanostructure by face-to-face dimerization of a pair of triangular ribozyme trimers, unit RNAs of which were derived from the Tetrahymena group I ribozyme. In this study, we have expanded the dimerization strategy to a square-shaped ribozyme tetramer by introducing four pillar units. The resulting box-shaped nanostructures, which contained eight ribozyme units, can be assembled from either four or two components of their unit RNAs.


Assuntos
RNA Catalítico , Tetrahymena , Dimerização , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/química , Tetrahymena/genética
12.
J Eukaryot Microbiol ; 69(4): e12907, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35313044

RESUMO

Amitosis is widespread among eukaryotes, but the underlying mechanisms are poorly understood. The polyploid macronucleus (MAC) of unicellular ciliates divides by amitosis, making ciliates a potentially valuable model system to study this process. However, a method to accurately quantify the copy number of MAC chromosomes has not yet been established. Here, we used droplet digital PCR (ddPCR) to quantify the absolute copy number of the MAC chromosomes in Tetrahymena thermophila. We first confirmed that ddPCR is a sensitive and reproducible method to determine accurate chromosome copy numbers at the single-cell level. We then used ddPCR to determine the copy number of different MAC chromosomes by analyzing individual T. thermophila cells in the G1 and the amitotic (AM) phases. The average copy number of MAC chromosomes was 90.9 at G1 phase, approximately half the number at AM phase (189.8). The copy number of each MAC chromosome varied among individual cells in G1 phase and correlated with cell size, suggesting that amitosis accompanied by unequal cytokinesis causes copy number variability. Furthermore, the fact that MAC chromosome copy number is less variable among AM-phase cells suggests that the copy number is standardized by regulating DNA replication. We also demonstrated that copy numbers differ among different MAC chromosomes and that interchromosomal variations in copy number are consistent across individual cells. Our findings demonstrate that ddPCR can be used to model amitosis in T. thermophila and possibly in other ciliates.


Assuntos
Cilióforos , Tetrahymena thermophila , Tetrahymena , Cromossomos , Cilióforos/genética , Variações do Número de Cópias de DNA , Humanos , Macronúcleo/genética , Poliploidia , Tetrahymena/genética , Tetrahymena thermophila/genética
13.
PLoS One ; 17(2): e0263691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35171923

RESUMO

Meiotic DNA double-strand breaks produce reciprocally exchanged DNA strands, which mature into chiasmata that hold homologous chromosomes together as bivalents. These bivalents are subsequently separated in the first meiotic division. In a mutant lacking the newly identified Tetrahymena gene APRO1 (Anaphase promoting 1), meiosis is arrested by the end of prophase. Mature chiasmata are not formed but bivalents are connected via a molecular precursor structure. In-depth analysis of this arrested intermediate structure may help to elucidate the noncanonical molecular recombination pathway in Tetrahymena.


Assuntos
Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Meiose , Tetrahymena/genética
14.
Biochemistry ; 60(46): 3485-3490, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34492193

RESUMO

RNA-based machines are ubiquitous in Nature and increasingly important for medicines. They fold into complex, dynamic structures that process information and catalyze reactions, including reactions that generate new RNAs and proteins across biology. What are the experimental strategies and steps that are necessary to understand how these complex machines work? Two 1990 papers from Herschlag and Cech on "Catalysis of RNA Cleavage by the Tetrahymena thermophila Ribozyme" provide a master class in dissecting an RNA machine through kinetics approaches. By showing how to propose a kinetic framework, fill in the numbers, do cross-checks, and make comparisons across mutants and different RNA systems, the papers illustrate how to take a mechanistic approach and distill the results into general insights that are difficult to attain through other means.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA , RNA Catalítico/metabolismo , Biocatálise , História do Século XX , Íntrons , Cinética , RNA Catalítico/história , Tetrahymena/genética , Tetrahymena/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-34402751

RESUMO

While current group I ribozymes use several distinct strategies to function under conditions of low Mg2+ concentration (≤ 3 mM), a deletion mutant of the Tetrahymena ribozyme (ΔP5 ribozyme) is virtually inactive with 3 mM Mg2+ due to removal of the large peripheral module, P5abc, supporting the active conformation of the core module. We investigated the molecular crowding effects of synthetic polyethylene glycols (PEGs) on the activity of the ΔP5 ribozyme. Among PEG molecules with different chain lengths, PEG600 improved the activity of the ΔP5 ribozyme most effectively in the presence of 3 mM Mg2+.


Assuntos
Polietilenoglicóis/farmacologia , RNA Catalítico/efeitos dos fármacos , RNA Catalítico/metabolismo , Tetrahymena/metabolismo , Cátions Bivalentes , Cinética , Magnésio/metabolismo , Organismos Geneticamente Modificados , RNA Catalítico/genética , Tetrahymena/genética
16.
Parasitol Res ; 120(7): 2595-2616, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33851248

RESUMO

The presence of parasitic ciliates of the hymenostome genus Tetrahymena was examined in 150 mollusks belonging to six bivalve and 13 gastropod species in Slovakia, Central Europe. Tetrahymenids were detected only in two species, viz., in the invasive Lusitanian slug (Arion vulgaris) and in the native swollen river mussel (Unio tumidus). Although only 10.52% of the examined mollusk taxa were positive, their Tetrahymena infections were very intensive accounting for several hundreds of ciliates per host. Phylogenetic analyses of the 16S and 18S rRNA genes as well as of the barcoding region of the gene encoding for cytochrome c oxidase subunit I revealed that both isolates represent new taxa, T. foissneri sp. n. and T. unionis sp. n. The former species belongs to the 'borealis' clade and its nearest relative is T. limacis, a well-known parasite of slugs and snails. Besides molecular data, T. foissneri can be distinguished from T. limacis also morphologically by the body shape of the parasitic-phase form, dimensions of micronuclei, and the silverline system. On the other hand, T. unionis was classified within the 'paravorax' clade along with T. pennsylvaniensis, T. glochidiophila, and T. nigricans. Although these four species are genetically distinct, T. unionis could be morphologically separated only from T. nigricans by body shape and size. The present study suggests that both aquatic and terrestrial mollusks represent interesting hosts for the discovery of novel Tetrahymena lineages.


Assuntos
Bivalves/parasitologia , Caramujos/parasitologia , Tetrahymena/classificação , Animais , Cilióforos/classificação , Ciclo-Oxigenase 1/genética , Europa (Continente) , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Alimentos Marinhos , Eslováquia , Tetrahymena/genética , Tetrahymena/crescimento & desenvolvimento
17.
J Eukaryot Microbiol ; 68(3): e12851, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749960

RESUMO

An NAD-linked lactate dehydrogenase (LDH) in a crude mitochondrial fraction obtained from Tetrahymena homogenates was previously reported by this laboratory. This fraction contains the NADH and succinate oxidase system as well as the mitochondrial cytochromes and carries out oxidative phosphorylation. The preparation catalyzes the oxidation of D- and L-lactate linked only to certain analogs of NAD; it has not been possible to demonstrate NAD-dependent D- or L-lactate oxidation nor is there any evidence that either of these enzymes is a flavoprotein as indicated by their inability to reduce directly certain artificial electron acceptors. A lactate racemase is not present.


Assuntos
L-Lactato Desidrogenase , Tetrahymena , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenases/metabolismo , Mitocôndrias/metabolismo , Nucleotídeos , Oxirredução , Piridinas , Tetrahymena/genética , Tetrahymena/metabolismo
18.
Aquat Toxicol ; 233: 105790, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662879

RESUMO

The potential exposure of titanate nanotubes (TNTs) to wildlife and humans may occur as a result of increased use and application as functional nanomaterials. However, there is a dearth of knowledge regarding the pathways of uptake and excretion of TNTs and their toxicity in cells. In this study, three strains of the Tetrahymena genus of free-living ciliates, including a wild type strain (SB210) and two mutant strains (SB255: mucocyst-deficient; NP1: temperature-sensitive "mouthless''), were used to study the pathways of uptake and excretion and evaluate the cytotoxicity of TNTs. The three Tetrahymena strains were separately exposed to 0, 0.01, 0.1, 1 or 10 mg/L of TNTs, and cells were collected at different time points for quantification of intracellular TNTs (e.g., 5, 10, 20, 40, 60, 90 and 120 min) and evaluation of cytotoxicity (12 and 24 h). TNT contents in NP1 and SB255 were greater or comparable to the contents in SB210 while exposure to 10 mg/L TNTs in 120 min. Furthermore, exposure to 10 mg/L TNTs for 24 h caused greater decreases in cell density of NP1 (38.2 %) and SB255 (36.8 %) compared with SB210 (26.5 %) and upregulated the expression of caspase 15 in SB210. Taken together, our results suggested that TNT uptake by pinocytosis and excretion by exocytosis in Tetrahymena, and the exposure could cause cytotoxicity which can offer novel insights into the accumulation kinetics of nanotubes and even nanomaterials in single cell.


Assuntos
Nanotubos/toxicidade , Organismos Geneticamente Modificados/efeitos dos fármacos , Tetrahymena/efeitos dos fármacos , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Transporte Biológico , Corantes , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Humanos , Cinética , Organismos Geneticamente Modificados/metabolismo , Pinocitose/efeitos dos fármacos , Tetrahymena/genética , Tetrahymena/metabolismo , Titânio/metabolismo , Poluentes Químicos da Água/metabolismo
19.
RNA Biol ; 18(11): 1540-1545, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33530834

RESUMO

Transposable elements have both detrimental and beneficial effects on their host genome. Tetrahymena is a unicellular eukaryote that deals with transposable elements in a unique way. It has a separate somatic and germline genome in two nuclei in a single cell. During sexual reproduction, a small RNA directed system compares the germline and somatic genome to identify transposable elements and related sequences. These are subsequently marked by heterochromatin and excised. In this Review, current knowledge of this system and the gaps therein are discussed. Additionally, the possibility to exploit the Tetrahymena machinery for genome editing and its advantages over the widely used CRISPR-Cas9 system will be explored. While the bacterial derived CRISPR-Cas9 has difficulty to access eukaryotic chromatin, Tetrahymena proteins are adept at acting in a chromatin context. Furthermore, Tetrahymena based gene therapy in humans might be a safer alternative to Cas9 because the latter can trigger an immune response.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Terapia Genética/métodos , Genoma de Protozoário , Tetrahymena/genética , Animais , Humanos
20.
Nat Biotechnol ; 39(3): 336-346, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33106685

RESUMO

Current methods for determining RNA structure with short-read sequencing cannot capture most differences between distinct transcript isoforms. Here we present RNA structure analysis using nanopore sequencing (PORE-cupine), which combines structure probing using chemical modifications with direct long-read RNA sequencing and machine learning to detect secondary structures in cellular RNAs. PORE-cupine also captures global structural features, such as RNA-binding-protein binding sites and reactivity differences at single-nucleotide variants. We show that shared sequences in different transcript isoforms of the same gene can fold into different structures, highlighting the importance of long-read sequencing for obtaining phase information. We also demonstrate that structural differences between transcript isoforms of the same gene lead to differences in translation efficiency. By revealing isoform-specific RNA structure, PORE-cupine will deepen understanding of the role of structures in controlling gene regulation.


Assuntos
Sequenciamento por Nanoporos/métodos , Conformação de Ácido Nucleico , RNA/química , Análise de Sequência de RNA/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Isomerismo , RNA/genética , Tetrahymena/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...